A) GOAL

The students should gain the knowledge and insight into, the functional anatomy of the normal human head and neck, functional histology and an appreciation of the genetic basis of inheritance and disease, and the embryological development of clinically important structures. So that relevant anatomical & scientific foundations are laid down for the clinical years of the BDS course.

B) OBJECTIVES :

a) KNOWLEDGE & UNDERSTANDING:

At the end of the 1st year BDS course in Anatomical Sciences the undergraduate student is Expected to:

1. Know the normal disposition of the structures in the body while clinically examining a patient and while conducting clinical procedures.
2. Know the anatomical basis of disease and injury.
3. Know the microscopic structure of the various tissues, a prerequisite for understanding of the disease processes.
4. Know the nervous system to locate the site of lesions according to the sensory and or motor deficits encountered.
5. Have an idea about the basis of abnormal development, critical stages of development, effects of teratogens, genetic mutations and environmental hazards.
6. Know the sectional anatomy of head neck and brain to read the features in radiographs and pictures taken by modern imaging techniques.
7. Know the anatomy of cardio-pulmonary resuscitation.

b) SKILLS:

1. To locate various structures of the body and to mark the topography of the living anatomy.
2. To identify various tissues under microscope.
3. To identify the features in radiographs and modern imaging techniques.
4. To detect various congenital abnormalities.
c) INTEGRATION:

By emphasising on the relevant information and avoiding unwanted details, the anatomy taught integrally with other basic sciences & clinical subjects not only keeps the curiosity alive in the learner but also lays down the scientific foundation for making a better doctor, a benefit to the society.

This insight is gained in a variety of ways:

1. Lectures & small group teaching
2. Demonstrations
3. Dissection of the human cadaver
4. Study of dissected specimens
5. Osteology
6. Surface anatomy on living individual
7. Study of radiographs & other modern imaging techniques.
8. Study of Histology slides.
9. Study of embryology models
10. Audio-visual aids

Throughout the course, particular emphasis is placed on the functional correlation, clinical application & on integration with teaching in other bio dental disciplines.

Instructional period - Theory - 890 Hours - Practical - 4835 Hours

d) AN OUTLINE OF THE COURSE CONTENT:

1. General anatomy: Introduction of anatomical terms and brief outline of various systems of the body.
2. Regional anatomy of head & neck with osteology of bones of head & neck, with emphasis on topics of dental importance.
4. The regional anatomy of the sites of intramuscular & intravascular injections, & lumbar puncture.
5. General embryology & systemic embryology with respect to development of head & neck.
6. Histology of basic tissues and of the organs of gastroinstesntinal, respiratory, Endocrine, excretory systems & gonads.
7. Medical genetics

FURTHER DETAILS OF THE COURSE.

I. INTRODUCTION TO:
1. Anatomical terms.
2. Skin, superficial fascia & deep fascia
3. Cardiovascular system, portal system collateral circulation and arteries.
4. Lymphatic system, regional lymph nodes
5. Osteology - Including ossification & growth of bones
8. Nervous system

II. HEAD & NECK:

1. Scalp, face & temple, lacrimal apparatus
3. Cranial cavity - Meninges, parts of brain, ventricles of brain, dural venous sinuses, cranial nerves attached to the brain, pituitary gland.
5. Orbital cavity – Muscles of the eye ball, supports of the eye ball, nerves and vessels in the orbit.
7. Temporo mandibular joint, muscles of mastication, infratemporal fossa, pterygo - palatine fossa.
8. Submandibular region
9. Walls of the nasal cavity, paranasal air sinuses
10. Palate
11. Oral cavity, Tongue

III. THORAX:

Demonstration on a dissected specimen of

1. Thoracic wall
2. Heart chambers
3. Coronary arteries
4. Pericardium
5. Lungs – surfaces; pleural cavity
6. Diaphragm

IV. ABDOMEN:

Demonstration on a dissected specimen of

1. Peritoneal cavity
2. Organs in the abdominal & pelvic cavity.

V. CLINICAL PROCEDURES:

a) Intramuscular injections: Demonstration on a dissected specimen and on a living person of the following sites of injection.

1. Deltoid muscle and its relation to the axillary nerve and radial nerve.
2. Gluteal region and the relation of the sciatic nerve.
3. Vastus lateralis muscle.

b) Intravenous injections & venesection: Demonstration of veins in the dissected specimen and on a living person.

1. Median cubital vein
2. Cephalic vein
3. Basilic vein
4. Long saphenous vein

c) Arterial pulsations: Demonstration of arteries on a dissected specimen and feeling of pulsation of the following arteries on a living person.

1. Superficial temporal
2. Facial
3. Carotid
4. Axillary
5. Brachial
6. Radial
7. Ulnar
8. Femoral
9. Popliteal
10. Dorsalis pedis

d) Lumbar puncture: Demonstration on a dissected specimen of the spinal cord, cauda equina & epidural space and the inter vertebral space between L4 & L5

VI. EMBRYOLOGY

Oogenesis, Spermatogenesis, Fertilisation, Placenta, Primitive streak, Neural crest, Bilaminar and trilaminar embryonic disc, Intra embryonic mesoderm - formation and fate, notochord formation & fate, Pharyngeal arches, pouches & clefts, Development of face, tongue, palate, thyroid gland, pituitary gland, salivary glands, and anomalies in their development, Tooth development in brief.

VII. HISTOLOGY:

The Cell:

Basic tissues - Epithelium, Connective tissue including cartilage and bone, Muscle

Tissue, Nervous tissue - Peripheral nerve, optic nerve, sensory ganglion, motor ganglion, Skin

Classification of Glands - Salivary glands (serous, mucous and mixed gland), Blood vessels, Lymphoid tissue Tooth, lip, tongue, hard palate, oesphagus, stomach, duodenum, ileum, colon, vermiform appendix Liver, Pancreas, Lung, Trachea, Epiglottis, Thyroid gland, para thyroid gland, supra renal gland and pituitary gland, Kidney, Ureter, Urinary bladder, Ovary and testis.

VIII. MEDICAL GENETICS

Mitosis, meiosis, Chromosomes, gene structure, Mendelism, modes of inheritance

RECOMMENDED BOOKS:

1. SNELL (Richard S.) Clinical Anatomy for Medical Students, Ed. 5, Little Brown & company, Boston.
1. General Human Physiology and Biochemistry, Nutrition and Dietics

A) **GOAL**

The broad goal of the teaching undergraduate students in Human Physiology aims at providing the student comprehensive knowledge of the normal functions of the organ systems of the body to facilitate an understanding of the physiological basis of health and disease.

OBJECTIVES

a) **KNOWLEDGE:**

At the end of the course, the student will be able to:

1. Explain the normal functioning of all the organ systems and their interactions for well co-ordinated total body function.
2. Assess the relative contribution of each organ system towards the maintenance of the milieu interior.
3. List the physiological principles underlying the pathogenesis and treatment of disease.

b) **SKILLS:**

At the end of the course, the student shall be able to:

1. Conduct experiments designed for the study of physiological phenomena.
2. Interpret experimental and investigative data

c) **INTEGRATION**

At the end of the integrated teaching the student shall acquire an integrated knowledge of organ structure and function and its regulatory mechanisms.
B) COURSE CONTENTS THEORY

1) GENERAL PHYSIOLOGY

1) Homeostasis: Basic concept, Feedback mechanisms
2) Structure of cell membrane, transport across cell membrane
3) Membrane potentials

C) BLOOD:

Composition & functions of blood.

Specific gravity, Packed cell volume, factors affecting & methods of determination.

Plasma proteins - Types, concentration, functions & variations.

Erythrocyte - Morphology, functions & variations. Erythropoiesis & factors affecting erythropoiesis.

ESR - Methods of estimation, factors affecting, variations & significance.

Haemoglobin - Normal concentration, method of determination & variation in concentration.

Blood Indices - MCV, MCH, MCHC - definition, normal values, variation.

Anaemia - Definition, classification, life span of RBC’s destruction of RBC’s, formation & fate of bile pigments, Jaundice - types.

2. **Leucocytes**: Classification, number, percentage, distribution morphology, properties, functions & variation. Role of lymphocytes in immunity, leucopoiesis life span & fate of leucocytes.

Thromobocytes - Morphology, number, variations, function & thrombopoiesis.

Haemostatsis - Role of vasoconstriction, platelet plug formation in haemostasis, coagulation factors, intrinsic & extrinsic pathways of coagulation, clot retraction.

Blood groups: ABO & Rh system, method of determination, importance, indications & dangers of blood transfusion, blood substitutes.

Blood volume: Normal values, variations.

Body fluids: distribution of total body water, intracellular & extracellular compartments, major anions & cations in intra and extra cellular fluid.

Functions of reticulo endotrelial system.

3. **MUSCLE AND NERVE**

4. **DIGESTIVE SYSTEM**:

Introduction to digestion: General structure of G.I. tract, Innervation.

Salivary glands: Structure of salivary glands, composition, regulation of secretion & functions of saliva.

Stomach: Composition and functions of gastric juice, mechanism and regulation of gastric secretion.

Exocrine Pancreas - Structure, composition of pancreatic juice, functions of each component, regulation of pancreatic secretion.

Liver: structure, composition of bile, functions of bile, regulation of secretion – Gall bladder: structure, functions.

Small intestine - Composition, functions & regulation of secretion of intestinal juice.
Large intestine - Functions. Motor functions of GIT: Mastication, deglutition, gastric filling & emptying, movements of small and large intestine, defecation.

5. EXCRETORY SYSTEM:

Formation of Urine: Glomerular filtration rate - definition, determination, normal values, factors influencing G.F.R. Tubular reabsorption - Reabsorption of sodium, glucose, water & other substances.

Tubular secretion - secretion of urea, hydrogen and other substances.

Mechanism of concentration & dilution of urine.

Role of kidney in the regulation of pH of the blood.

Micturition: anatomy & innervation of Urinary bladder, mechanism of micturition & abnormalities.

6. BODY TEMPERATURE & FUNCTIONS OF SKIN

7. ENDOCRINOLOGY

Thyroid: Histology, synthesis, secretion & transport of hormones, actions of hormones, regulation of secretion & disorders, Thyroid function tests.

Adrenal cortex & Medulla - synthesis, secretion, action, metabolism, regulation of secretion of hormones & disorders.

Other hormones - Angiotensin, A.N.F.
8. REPRODUCTION

Sex differentiation, Physiological anatomy of male and female sex organs,

Female reproductive system: Menstrual cycle, functions of ovary, actions of oestrogen & Progesterone, control of secretion of ovarian hormones, tests for ovulation, fertilisation, implantation, maternal changes during pregnancy, pregnancy tests & parturition.

Lactation, composition of milk, factors controlling lactation, milk ejection, reflex,

Male reproductive system: spermatogenesis, semen and contraception.

9. CARDIO VASCULAR SYSTEM

Functional anatomy and innervation of heart Properties of cardiac muscle Origin & propagation of cardiac impulse and heart block.

Electrocardiogram: Normal electrocardiogram. Two changes in ECG in myocardial infarction.

Cardiac cycle: Phases, Pressure changes in atria, ventricles & aorta.

Volume changes in ventricles. Jugular venous pulse, arterial pulse.

Heart sounds: Mention of murmurs.

Heart rate: Normal value, variation & regulation.

Cardiac output: Definition, normal values, one method of determination, variation, factors affecting heart rate and stroke volume.

Arterial blood pressure: Definition, normal values & variations, determinants, regulation & measurement of blood pressure.

Coronary circulation.

Cardio vascular homeostasis - Exercise & posture.
10. RESPIRATORY SYSTEM

Physiology of Respiration: External & internal respiration.

Functional anatomy of respiratory passage & lungs.

Respiratory movements: Muscles of respiration, Mechanism of inflation & deflation of lungs.

Intra pleural & intra pulmonary pressures & their changes during the phases of respiration.

Mechanics of breathing - surfactant, compliance & work of breathing.

Spirometry: Lung volumes & capacities definition, normal values, significance, factors affecting vital capacity, variations in vital capacity, FEV & its variations.

Pulmonary ventilation - alveolar ventilation & dead space – ventilation.

Composition of inspired air, alveolar air and expired air.

Exchange of gases: Diffusing capacity, factors affecting it.

Transport of Oxygen & carbon dioxide in the blood.

Regulation of respiration – neural & chemical.

Hypoxia, cyanosis, dyspnoea, periodic breathing.

Artificial respiration, pulmonary function tests.

11. CENTRAL NERVOUS SYSTEM

Organisation of central nervous system

Neuronal organisation at spinal cord level

Synapse receptors, reflexes, sensations and tracts

Physiology of pain

Functions of cerebellum, thalamus, hypothalamus and cerebral cortex.
Formation and functions of CSF

Autonomic nervous system

12. SPECIAL SENSES

Fundamental knowledge of vision, hearing, taste and smell.

PRACTICALS

The following list of practical is minimum and essential. All the practical have been categorised as procedures and demonstrations. The procedures are to be performed by the students during practical classes to acquire skills. All the procedures are to be included in the University practical examination. Those categorised as demonstrations are to be shown to the students during practical classes. However these demonstrations would not be included in the University examinations but question based on this would be given in the form of charts, graphs and calculations for interpretation by the students.

PROCEDURES:

1. Enumeration of Red Blood Cells
2. Enumeration of White Blood Cells
3. Differential leucocyte counts
4. Determination of Haemoglobin
5. Determination of blood group
6. Determination of bleeding time and clotting time
7. Examination of pulse
8. Recording of blood pressure.

DEMONSTRATION:

1. Determination of packed cell volume and erythrocyte sedimentation rate
2. Determination of specific gravity of blood
3. Determination of erythrocyte fragility
4. Determination of vital capacity and timed vital capacity
5. Skeletal muscle experiments.

and tetanus. Effect of after load and free load on muscle contraction, calculation of work done.

6. Electrocardiography: Demonstration of recording of normal Electrocardiogram
7. Clinical examination of cardiovascular and respiratory system.

TEXT BOOKS:

Ganong; Review of Medical Physiology, 19th edition

Vander; Human physiology, 5th edition

Choudhari; Concise Medical Physiology, 2nd edition

Chaterjee; Human Physiology, 10th edition

A.K. Jain; Human Physiology for BDS students, 1st edition

BOOKS FOR REFERENCE:

i) Berne & Levey; Physiology, 2nd edition
ii) West-Best & Taylor’s, Physiological basis of Medical Practise, 11th edition

EXPERIMENTAL PHYSIOLOGY:

iii) Rannade; Practical Physiology, 4th edition
iv) Ghai; a text book of practical physiology
v) Hutchison’s; Clinical Methods, 20th edition

BIOCHEMISTRY

AIMS AND SCOPE OF THE COURSE IN BIOCHEMISTRY

The major aim is to provide a sound but crisp knowledge on the biochemical basis of the life processes relevant to the human system and to dental/medical practice. The contents should be organised to build on the already existing information available to the students in the pre-university stage and reorienting. A mere rehash should be avoided.
The major aim is to provide a sound but crisp knowledge on the biochemical basis of the life processes relevant to the human system and to dental/medical practice. The contents should be organised to build on the already existing information available to the students in the pre-university stage and reorienting. A mere rehash should be avoided.

Discussion on metabolic processes should put emphasis on the overall change, interdependence and molecular turnover. While details of the steps may be given, the student should not be expected to memorise them. An introduction to biochemical genetics and molecular biology is a must but details should be avoided. The exposure to antivitamins, antimetabolites and enzyme inhibitors at this stage, will provide a basis for the future study of medical subjects. An overview of metabolic regulation is to be taught by covering hormonal action, second messengers and regulation of enzyme activities. Medical aspects of biochemistry should avoid describing innumerable functional tests, most of which are not in vogue. Cataloguing genetic disorders under each head of metabolism is unnecessary. A few examples which correlate genotype change to functional changes should be adequate.

At the end of the course the student would be able to acquire a useful core of information, which can be retained for a long time. Typical acid tests can be used to determine what is to be taught or what is to be learnt. A few examples are given below.

1. Need not know the structure of cholesterol. Should know why it cannot be carried free in plasma.
2. Mutarotation should not be taught. Student should know why amylase will not hydrolyse cellulose.
3. Need not know the details of alpha - helix and beta - pleats in proteins. Should know why haemoglobin is globular and keratin is fibrous.
4. Need not know mechanism of oxidative phosphorylation. Should know more than 90 % of ATP is formed by this process.
5. Need not know details of the conversion of pepsinogen to pepsin. Should know hydrochloric acid cannot break a peptide bond at room temperature.
6. Need not remember the steps of glycogenesis. Should know that excess intake of carbohydrate will not increase glycogen level in liver or muscle.
7. Need not know about urea or creatinine clearance tests. Should know the basis of increase of urea and creatinine in blood in renal insufficiency.
8. Need not know the structure of insulin. Should know why insulin level in circulation is normal in most cases of maturity onset diabetes.

9. Need not know the structural details of ATP. Should know why about 10 g of ATP in the body at any given time meets all the energy needs.

10. Need not know the mechanism of action of prolylhydroxylase. Should know why the gum bleeds in scurvy.

11. Need not know the structure of Vitamin K. Should know the basis of internal bleeding arising due to its deficiency.

12. Need not remember the structure of HMGCoA. Should know why it does not lead to increased cholesterol synthesis in starvation.

BIOCHEMISTRY AND NUTRITION

1. CHEMISTRY OF BIOORGANIC MOLECULES

Carbohydrates: Definition, biological importance and classification.

Proteins: Biological importance. Aminoacids: Classification. Introduction to peptides.

2. High energy compounds: ATP, Phosphorylamidines, Thiolesters, Enol phosphates.

3. MICRONUTRIENTS

4. ENERGY METABOLISM

5. SPECIAL ASPECTS OF METABOLISM

Detoxication: Typical reactions. Examples of toxic compounds. Oxygen toxicity

6. BIOCHEMICAL GENETICS AND PROTEIN SYNTHESIS
Introduction to nucleotides; formation and degradation. DNA as genetic material. Introduction to replication and transcription. Forms and functions of RNA. Genetic code and mutation. Outline of translation process. Antimetabolites and antibiotics interfering in replication, transcription and translation. Introduction to cancer, viruses and oncogenes.

7. ENZYME AND METABOLIC REGULATION

8. STRUCTURAL COMPONENTS AND BLOOD PROTEINS

9. MEDICAL BIOCHEMISTRY

Hyperthyroidism and hypothyroidism: Biochemical evaluation. Hyperlipoproteinemias and atherosclerosis, Approaches to treatment.

Jaundice: Classification and evaluation.

Liver function tests: Plasma protein pattern, serum enzymes levels. Brief introduction to kidney function tests and gastric function tests. Acid base imbalance. Electrolyte imbalance:
evaluation. Gout. Examples of genetic disorders including lysosomal storage disorders, glycogen storage disorders, glucose 6-phosphate dehydrogenase deficiency, hemoglobinopathies, inborn errors of amino acid metabolism and muscular dystrophy (one or two examples with biochemical basis will be adequate). Serum enzymes in diagnosis.

PRACTICALS: - Contact hours 50

1. Qualitative analysis of carbohydrates 4
2. Color reactions of proteins and amino acids 4
3. Identification of nonprotein nitrogen substance 4
4. Normal constituents of urine 4
5. Abnormal constituents of urine 4
6. Analysis of saliva including amylase 2
7. Analysis of milk-Quantitative estimations 2
8. Titrable acidity and ammonia in urine 2
9. Free and total acidity in gastric juice 2
10. Blood glucose estimation 2
11. Serum total protein estimation 2
12. Urine creatinine estimation Demonstration 2
13. Paper electrophoresis charts/clinical data evaluation 2
14. Glucose tolerance test profiles 2
15. Serum lipid profiles 1
16. Profiles of hypothyrodisim and hyperthyrodisim 1
17. Profiles of hyper and hypoparathyroidism 1
18. Profiles of liver function 1
19. Urea, uric acid creatinine profile in kidney disorders 1
20. Blood gas profile in acidosis/ alkalosis 1

RECOMMENDED BOOKS:

3. lecture notes in Biochemistry 1984, J.K. Kandlish

REFERENCE BOOKS:

2. Dental Anatomy, Embryology and Oral Histology

INTRODUCTION:

Dental anatomy including embryology and oral histology - a composite of basic Dental Sciences & their clinical applications.

SKILLS

The student should acquire basic skills in:

1. Carving of crowns of permanent teeth in wax.
3. Identification of Deciduous & Permanent teeth.
4. Age estimation by patterns of teeth eruption from plaster casts of different age groups.

OBJECTIVES

After a course on Dental Anatomy, Embryology and Oral Histology.

1. The student is expected to appreciate the normal development, morphology, structure & functions of oral tissues & variations in different pathological/non-pathological states.
2. The student should understand the histological basis of various dental treatment procedures and physiologic ageing process in the dental tissues.
3. The students must know the basic knowledge of various research methodologies.

I. TOOTH MORPHOLOGY

1. Introduction to tooth morphology:

 Human dentition, types of teeth, & functions, Palmer's & Binomial notation systems, tooth surfaces, their junctions - line angles & point angles, definition of terms used in dental morphology, geometric concepts in tooth morphology, contact areas & embrasures - Clinical significance.
2. Morphology of permanent teeth:

 Description of individual teeth, along with their endodontic anatomy & including a note on their chronology of development, differences between similar class of teeth & identification of individual teeth.

 Variations & Anomalies commonly seen in individual teeth.

3. Morphology of Deciduous teeth:

 Generalized differences between Deciduous & Permanent teeth.

 Description of individual deciduous teeth, including their chronology of development, endodontic anatomy, differences between similar class of teeth & identification of individual teeth.

4. Occlusion:

 Definition, factors influencing occlusion - basal bone, arch, individual teeth, external & internal forces & sequence of eruption.

 Inclination of individual teeth - compensatory curves.

 Centric relation & Centric occlusion - protrusive, retrusive & lateral occlusion.

 Clinical significance of normal occlusion.

 Introduction to & Classification of Malocclusion.

II. ORAL EMBRYOLOGY

1. Brief review of development of face, jaws, lip, palate & tongue, with applied aspects.

2. Development of teeth:

 Epithelial mesenchymal interaction, detailed study of different stages of development of crown, root & supporting tissues of tooth & detailed study of formation of calcified tissues.

 Applied aspects of disorders in development of teeth.

3. Eruption of deciduous & Permanent teeth:
Mechanisms in tooth eruption, different theories & histology of eruption, formation of dentogingival junction, role of gubernacular cord in eruption of permanent teeth.

Clinical or Applied aspects of disorders of eruption.

4. Shedding of teeth:

Factors & mechanisms of shedding of deciduous teeth.

Complications of shedding.

III. ORAL HISTOLOGY

1. Detailed microscopic study of Enamel, Dentine, Cementum & Pulp tissue. Age changes & Applied aspects (Clinical and forensic significance) of histological considerations - Fluoride applications, transparent dentine, dentine hypersensitivity, reaction of pulp tissue to varying insults to exposed dentine; Pulp calcifications & Hypercementosis.

2. Detailed microscopic study of Periodontal ligament & alveolar bone, age changes, histological changes in periodontal ligament & bone in normal & orthodontic tooth movement, applied aspects of alveolar bone resorption.

4. Salivary Glands:

Detailed microscopic study of acini & ductal system.

Age changes & clinical considerations.

5. TM Joint

Review of basic anatomical aspects & microscopic study & clinical considerations.

6. Maxillary Sinus:

Microscopic study, anatomical variations, functions & clinical relevance of maxillary sinus in dental practice.

7. Processing of Hard & soft tissues for microscopic study:
Ground sections, decalcified sections & routine staining procedures.

8. Basic histochemical staining patterns of oral tissues.

IV. ORAL PHYSIOLOGY

1. Saliva:

Composition of saliva - variations, formation of saliva & mechanisms of secretion, salivary reflexes, brief review of secretomotor pathway, functions, role of saliva in dental caries & applied aspects of hyper & hypo salivation.

2. Mastication:

Masticatory force & its measurement - need for mastication, peculiarities of masticatory muscles, masticatory cycle, masticatory reflexes & neural control of mastication.

3. Deglutition:

Review of the steps in deglutition, swallowing in infants, neural control of deglutition & dysphagia.

4. Calcium, Phosphorous & fluoride metabolism:

Source, requirements, absorption, distribution, functions & excretion, clinical considerations, hypo & hypercalcemia & hyper & hypo phosphatemia & fluorosis.

5. Theories of Mineralization:

Definition, mechanisms, theories & their drawbacks.

Applied aspects of physiology of mineralization, pathological considerations - calculus formation.

6. Physiology of Taste

Innervation of taste buds & taste pathway, physiologic basis of taste sensation, age changes & applied aspects - taste disorders.
7. Physiology of Speech:

- Review of basic anatomy of larynx & vocal cords.

- Voice production, resonators, production of vowels & different consonants - Role of palate, teeth & tongue.

- Effects of dental prosthesis & appliances on speech & basic speech disorders.

RECOMMENDED TEXT BOOKS

1. Orban's Oral Histology & Embryology - S.N.Bhaskar
2. Oral Development & Histology - James & Avery
4. Dental Anatomy - its relevance to dentistry - Woelfel & Scheid
5. Applied Physiology of the mouth - Lavelle
6. Physiology & Biochemistry of the mouth - Jenkins